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Abstract

Many multivariate statistical methods call upon the assumption of multivariate

normality. However, many applied researchers fail to test this assumption. This

omission could be due to either ignorance of the existence of tests of multivariate

normality or confusion about which test to use. Although at least 50 tests of multivariate

normality exist, relatively little is known about the power of these procedures. The

purpose of this study was to examine the power of 13 promising tests of multivariate

normality under a variety of conditions. Monte Carlo simulations were used to generate

10,000 data sets from many multivariate distributions, including the multivariate normal

distribution, normal mixtures, elliptically contoured distributions, and heavily skewed

distributions. The test statistic for each procedure was calculated and compared with the

appropriate critical value. The number of rejections of the null hypothesis of multivariate

normality was tabled for each situation. No single test was found to be the most powerful

in all situations. The use of the Henze-Zirkler test is recommended for a formal test of

the null hypothesis of multivariate normality. The use of supplementary procedures such

as Mardia's measures of skewness and kurtosis and the chi-square or beta plot is also

recommended for diagnosing the cause of the non-normality.

'3



Multivariate Normality 3

Introduction

Multivariate methodology is vital to not only avoid Type I error rate inflation, but

also to honor the reality that most effects have multiple causes and multiple consequences

(Thompson, 1996). Also, it is well known that many multivariate statistical methods,

including MANOVA, discriminant analysis, and canonical correlation, call upon the

assumption of multivariate normality. According to Anderson (1984, pg. 3), "A major

reason for basing statistical analysis on the normal distribution is that this probabilistic

model approximates well the distribution of continuous measurements in many sampled

populations."

The performance of many multivariate methods is affected by certain deviations

from normality (Looney, 1995). Hypothesis tests involving mean vectors are more

sensitive to skewness, while tests involving variance-covariance matrices are more

sensitive to kurtosis (Mardia, Kent, & Bibby, 1979; DeCarlo, 1997). However, the

assumption of multivariate normality often goes untested (Baxter, 1997). Horswell

(1990, pg. 162) declared that these tests are "largely academic curiosities, seldom used by

practicing statisticians." Possible explanations for this omission by practitioners include

(Looney, 1995):

1. The practitioner is unaware of the existence of tests of multivariate

normality.

2. Convenient software for calculating the test statistic or p-value for a test

of multivariate normality is not readily available.

3. Even if software is used to calculate the test statistic, a special table may

be necessary to approximate the p-value of the test.

4
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4. The practitioner may not want to use a procedure when little is known

about the statistical power of the test.

5. The practitioner is reluctant to test for multivariate normality because he is

unsure of how to proceed if non-normality is detected.

An extensive literature exists regarding the testing of multivariate normality. One

reason that this literature exists is the fact that no single procedure can be uniformly most

powerful against all possible alternatives, or departures, from normality. At least 50

different procedures have been proposed for this problem. Since the possible variations

from normality are endless, Andrews, Gnanadesikan, and Warner (1973, pg. 95) warned

"seeking a single best method would seem to be neither pragmatically sensible nor

necessary."

The main purpose of this study is to pinpoint which procedures for testing

multivariate normality are effective against a wide range of non-normal alternatives. The

procedure(s) that are identified as effective could be used by a researcher even and

especially when the true distribution of the population is not known a priori. More

specifically, 13 different tests of multivariate normality were compared in a Monte Carlo

simulation study against many different distributions, ranging from the multivariate

normal to severe departures from normality. The research questions listed below all

pertain to the power of the following "classical" (such as Mardia's measures) and

"newer" tests of multivariate normality:

Mardia's test of multivariate skewness (1970)

Mardia's test of multivariate kurtosis (1970)

Hawkins' test (1981)
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Koziol's test (1982)

The Mardia-Foster omnibus test (1983)

Royston's test (1983)

The Paulson-Roohan-Sullo test (1987)

The Benze-Zirkler test (1990)

The Mardia-Kent omnibus test (1991)

The Romeu-Ozturk test (1993)

Singh's classical and robust tests (1993)

The Mudholkar-Srivastava-Lin test (1995)

The research questions to be addressed on this body of procedures for testing

multivariate normality are:

1. Do these tests reject the null hypothesis of multivariate normality
at the stated alpha level with data from a multivariate normal
population?

2. Which of these tests are most powerful against multivariate normal
mixtures?

3. Which of these tests are most powerful against elliptically
contoured distributions?

4. Which of these tests are most powerful against heavily skewed
distributions?

5. Which of these tests are most powerful when faced with a non-
normal multivariate distribution whose marginals are normal?

6. Which of these tests are most powerful when faced with a non-
normal multivariate distribution that has multivariate normal
values for skewness and kurtosis?

Li

Theoretical Framework

In general, analyses based upon variance-covariance matrices can be seriously

affected by the kurtosis of the distribution while analyses that involve the mean vectors

are more sensitive to skewness (Mardia, Kent, & Bibby, 1979; DeCarlo, 1997). But in
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many situations, we are either performing several different multivariate procedures upon

a data set or a procedure that involves hypotheses and/or assumptions about both location

and dispersion. Thus, generally we are concerned about deviations in terms of skewness,

kurtosis, or both simultaneously, and thus require a flexible method of testing

multivariate normality.

There is no shortage of proposed methods for assessing multivariate normality. A

current review of the literature has revealed that at least 50 procedures for testing

multivariate normality exist. Despite the abundance of methods, Rencher (1995)

commented that since multivariate normality is not as straightforward as univariate

normality, the "state of the art" is not as refined. Several reviews of the different

methods exist (see Andrews, Gnanadesikan, & Warner, 1973; Gnanadesikan, 1977;

Mardia, 1980; Koziol, 1986; and Looney, 1995), but none are completely comprehensive.

When compared to the amount of research available in developing tests of multivariate

normality, relatively little work has been done in evaluating the quality and power of

these procedures. Examples of studies comparing the power of tests of multivariate

normality are Ward (1988), Horswell (1990), Horswell & Looney (1992), Romeu &

Ozturk (1993), Young, Seaman, & Seaman (1995), and Bogdan (1999). None of these

studies is completely comprehensive and most were deliberately restricted in scope to a

limited category of tests.

Much of multivariate statistics consists of extensions of univariate methods to the

general case. Testing the goodness of fit of a data set to the multivariate normal

distribution is no exception. Most of the available multivariate normality testing

procedures are extensions of simpler tests of univariate normality. Thus, a large
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percentage of multivariate normality tests are either based on graphical plots, measures of

skewness and/or kurtosis, or goodness-of-fit procedures. Unfortunately, few of these

tests are truly formal, in the sense that both the null distribution of the test statistic has

been found and the consistency of the test has been established (Koziol, 1983; Bogdan,

1999). In the words of Baringhaus and Henze (1988, pg. 399) and of Csorgo (1989, pg.

108), there are few "genuine" tests of multivariate normality.

In the review of the literature, four categories of tests of multivariate normality

were found which could classify virtually all of the available procedures. These

categories are:

1. Graphical and Correlational Approaches

2. Skewness and Kurtosis Approaches

3. Goodness-of-fit Approaches

4. Consistent Approaches

A very common informal approach to univariate normality is to construct a

normal probability plot or a quantile-quantile (Q-Q) plot. Normality is indicated if this

plot is linear. A more formal hypothesis test can be based upon the correlation of the Q-

Q plot. This time-honored approach to assessing normality was extended to the

multivariate situation by Healy (1968) with the chi-square plot. In this classical

procedure, the squared Mahalanobis distances are ordered and plotted against

approximate expected order statistics from the chi-square distribution. Gnanadesikan and

Kettenring (1972) were the first to note that the exact marginal distribution of the squared

Mahalanobis distances is a multiple of a beta distribution. For a purely visual inspection,

the difference between the chi-square or beta plot is insignificant. However, this

8
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difference is more crucial in developing a formal hypothesis test for multivariate

normality.

Singh (1993) developed two different tests based upon the correlation of the beta

plot. One version of the test used the standard classical estimators for the mean vector

and the variance-covariance matrix for calculating the Mahalanobis distances. The

second version of this test used robust M-estimators (Maronna, 1976) for the mean vector

and variance-covariance matrix. The robust version of this test was developed to

alleviate the fact that multivariate outliers would greatly influence the calculated value of

the Mahalanobis distances and thus the beta plot's correlation coefficient. Singh's

procedures have not been previously assessed in a comprehensive power study.

Mardia's (1970) introduction of multivariate measures of skewness and kurtosis

was another seminal paper in the field of multivariate normality testing. Mardia derived

affine invariant extensions for skewness and kurtosis. The parameters for multivariate

skewness and kurtosis are denoted filp and /32p , respectively. For the multivariate

normal distribution, fil), = 0 and 132,1, = p(p + 2). Mardia determined that a function of

the multivariate skewness is asymptotically distributed as a chi-square random variable

with
p(p +1)(p + 2)

degrees of freedom and a function of the multivariate kurtosis is
6

asymptotically distributed as a standard normal random variable. Mardia exploited this

to develop two tests for multivariate normality.

Mardia's procedures, particularly his test based on multivariate kurtosis, are

probably the most used tests of multivariate normality. Mardia's measures are available

in SAS in PROC CALIS or PROC MODEL and the kurtosis measure is available in

9
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several structural equation modeling packages. Previous research (Ward, 1988;

Horswell, 1990; Horswell & Looney, 1992; Romeu & Ozturk, 1993; Bogdan, 1999) has

indicated that Mardia's procedures, particularly the skewness test, are among the best

available tests. It is inconceivable for any comprehensive study of the power of tests of

multivariate normality to not consider Mardia's measures. Thus, both were considered in

this study.

Many efforts have been made to construct a single "omnibus" test statistic that

combines elements of both skewness and kurtosis. Mardia and Foster (1983) derived six

possible test statistics. A statistic denoted Sw2, which used the Wilson-Hilferty

approximation (Bain & Englehardt, 1992) to derive an omnibus statistic with an

asymptotic chi-square distribution with two degrees of freedom, was found to be not

powerful by Ward (1988) or Horswell and Looney (1992). However, an alternative

statistic, Cw2, which factored in the covariance between multivariate skewness and

kurtosis, has not been previously studied. A more recent and promising statistic is an

omnibus statistic derived using Rao scores (Mardia & Kent, 1991). Both the Cw2 test and

the Mardia-Kent test were considered.

A multitude of researchers have extended univariate goodness-of-fit procedures to

the general multivariate case in order to develop a test for multivariate normality. Many

goodness-of-fit procedures, such as the Kolmogorov-Smirnov, Cramer-von Mises, and

Anderson-Darling tests, are based on the empirical distribution function. A simpler but

less powerful technique is the familiar chi-square test: Although many promising tests of

multivariate normality fall into this category, Rencher (1995) has criticized this approach

as unrealistic due to the inherent "sparseness" in multivariate data.

10
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Hawkins (1981) proposed an extension of the Anderson-Darling statistic to test a

multivariate data set for both normality and homoscedasticity. Paulson, Roohan, and

Su llo (1987) proposed a similar test. Both procedures convert the squared Mahalanobis

distances into a statistic that will have a uniform distribution if the multivariate normal

distribution holds. Their inclusion in this study is due to encouraging results reported by

Ward (1988), Romeu and Ozturk (1993), and Young, Seaman, and Seaman (1995).

Koziol (1982) derived his test by extending the Cramer-von Mises test to employ

the ordered squared Mahalanobis distances and approximate expected order statistics

from the chi-square distribution originally used by Healy (1968). Koziol's test had

relatively high power in the comparison studies of Romeu and Ozturk (1993) and Young,

Seaman, and Seaman (1995), leading to its consideration in this study.

The Shapiro-Wilk (1965) test is generally considered to be among the best

procedures for assessing univariate normality. Thus, it is only natural to extend it to the

multivariate case, as done by Royston (1983) and Mudholkar, Srivastava, and Lin (1995).

Although both procedures were considered here, Royston's procedure was found to be

sensitive to the correlational structure between the variables (Romeu & Ozturk, 1993).

A more recent and less well known goodness-of-fit procedure is the Qn procedure

developed by Ozturk and Dudewicz (1992). Romeu and Ozturk (1993) expanded this

procedure to test for multivariate normality. Their own power study indicated that the

Cholesky root version of this procedure was one of the most powerful prOcedures

available. The Romeu-Ozturk test was considered in this study.

All of the above procedures have been criticized for their lack of consistency

(Baringhaus & Henze, 1988; Csogro, 1989; Henze & Zirkler, 1990; Bogdan, 1999).

11.
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Recall that a statistic is consistent if it converges in probability to the parameter that it is

estimating and is generally considered to be a mathematically desirable property (Hogg &

Craig, 1995).

Epps and Pulley (1983) developed a test for univariate normality based upon the

empirical characteristic function. Baringhaus and Henze (1988) extended this test to the

multivariate case. It was proven to be consistent against all alteratives by Csorgo (1989)

and further extended into its current form by Henze and Zirkler (1990).

The Henze-Zirkler test statistic is based on using characteristic functions to

measure the distance between the hypothesized function (i.e. multivariate normal) and the

observed, or empirical, function. For consistency to hold, this distance must equal zero if

and only if the observed data are multivariate normal. Extensive derivations yielded a

closed form for the Henze-Zirkler statistic, which has an approximate lognormal

distribution.

This test was included in the power study largely due to the consistency of the

statistic. The consistency result implies the strong possibility that this test will be very

competitive against a wide range of alternatives and that this test is unlikely to have a

major weakness. Further, a similar test due to Bowman and Foster (1993) was found to

be a good performer by Bogdan (1999). However, Henze (1997) and Henze and Wagner

(1997) pointed out that Bowman and Foster's integrated squared error statistic is actually

a special case of the Henze-Zirkler test.

Methodology

The purpose of this study was to compare the power of commonly used and

promising tests of multivariate normality. Because the null distribution of most test

12
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statistics for multivariate normality is intractable, the Monte Carlo technique was used.

SAS/IML (Interactive Matrix Language) was used for the simulations. In the

simulations, 10000 data sets with sample size n = 25, 50, or 100 and dimension p = 2, 3,

4, or 5 from both the multivariate normal distribution and several non-normal

distributions were generated. These limitations were imposed both to keep computing

time reasonable and to consider sample sizes that are borderline for multivariate analysis.

These small sample sizes are likely to be the situation where the assumption of

multivariate normality is most critical to the researcher. The test statistic was calculated

for all 10000 data sets and compared to the appropriate critical value in order to estimate

the proportion of rejections for each test in each situation.

As a summary, the 13 tests of multivariate normality from four distinct categories

to be considered are:

A. Graphical and correlational test

1. Singh's test (1993) of the correlation of the beta plot, utilizing classical

estimates of location and dispersion

2. Singh's test (1993) of the correlation of the beta plot, utilizing robust M-

estimates of location and dispersion

B. Tests of multivariate skewness and kurtosis

1. Mardia's (1970) test of multivariate skewness

2. Mardia's (1970) test of multivariate kurtosis

3. The Mardia-Foster (1983) omnibus statistic

4. The Mardia-Kent (1991) omnibus statistic

13
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C. Multivariate extensions of univariate goodness-of-fit procedures

1. Koziol's (1982) extension of the Cramer-von Mises test

2. Hawkins' (1981) extension of the Anderson-Darling test

3. The Paulson-Roohan-Sullo (1987) extension of the Anderson-Darling test

4. Royston's (1983) multivariate Shapiro-Wilk test

5. The Mudholkar-Srivastava-Lin (1995) extension of the Shapiro-Wilk test

6. The Romeu-Ozturk (1993) test

D. Consistent tests of multivariate normality that use the empirical characteristic

function

1. The Henze-Zirkler (1990) test

In a Monte Carlo study, it is important to choose the alternatives to multivariate

normality very carefully. Many past Monte Carlo studies have been criticized for being

"wasteful and superfluous" (Hampel, Ronchetti, Rousseeuw, & Stahel, 1986, pg. 6) or

"haphazardly selected" (Horswell, 1990, pg. 167). Another limitation of some past

simulation studies was to only consider multivariate distributions that were merely

composed of marginal components independently and identically distributed from some

familiar univariate distribution. However, uncorrelated variables are neither common nor

interesting in multivariate analysis (Ward, 1988). Thus, any reasonable study comparing

the power of tests of multivariate normality will consider multivariate distributions with

correlated components. The multivariate distributions used for this study fulfilled this

criterion and were generated with algorithms found in Johnson (1987).

The first distribution to be considered is the multivariate normal distribution itself.

The tests are to be compared against the normal distribution for two reasons: to serve as

14
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a check that the algorithms for calculating the test statistics were programmed correctly

and to make sure that the tests only reject normality (and thus make a Type I error) at

approximately the nominal alpha level.

To simulate the situation of sampled subjects coming from two distinct normal

populations, various normal mixtures were considered. Three levels of mixing (or

contamination) were considered: /5 = 0.9, j5- = 0.788675, and /- 5 = 0.5 . The first choice

indicated mild contamination and is skewed and leptokurtic; the second choice indicates

moderate contamination and is skewed and mesokurtic; and the third choice indicates

severe contamination and is symmetric and platykurtic (Mardia, Kent, & Bibby, 1979;

Horswell, 1990). Further, the second choice, which is a non-normal distribution with

normal kurtosis, has been shown by Henze (1994) to be an alternative where Mardia's

tests are not consistent and have low power.

Elliptically contoured distributions are symmetric distributions that have contours

of equal density that have an elliptical shape (Johnson, 1987; Rencher, 1998). These

distributions are closely related to the normal distribution and are mild deviations from

normality. In fact, the multivariate normal distribution is a special case of an elliptical

distribution. The elliptical distributions considered in this study were the multivariate

uniform, which is highly non-normal due to platykurtosis (Romeu & Ozturk, 1993), two

members of the Pearson Type II family, and the multivariate t (with 10 degrees of

freedom) and Cauchy distributions, which are members of the Pearson Type VII family

and are very close to normality.

More severe departures from normality are seen in distributions that fall outside

of the elliptically contoured family and thus have skewness. It is expected that tests of

15
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multivariate normality would have very high power against this class of distributions.

The two examples of heavily skewed distributions considered in this study were the

multivariate chi-square and the multivariate lognormal. Both of these distributions also

exhibit non-normal kurtosis.

A theoretically interesting departure from multivariate normality is the situation

where the univariate marginal distributions are normal but the joint distribution is not.

This situation is impossible to detect using only univariate methods and is challenging for

even the multivariate procedures. An example of a multivariate distribution that fits this

description is a member of the Knintchine family of distributions (Johnson, 1987;

Horswell, 1990) and was used in this study to answer the fifth research question.

Another theoretically interesting case that is difficult to detect is a non-normal

distribution that has the same values for multivariate skewness and kurtosis as the normal

distribution. The "Generalized Exponential Power" family of distributions has this

property (Johnson, 1987; Horswell, 1990). A member of this family was used to answer

the last research question.

Results

The first distribution simulated was the multivariate normal distribution. In this

case, the null hypothesis is true, so each test should reject at about the 5% level. A

rejection rate far above the 5% level would indicate a problem with the Type I error rate.

The other distributions represent various deviations from multivariate normality, ranging

from mild to severe. In these cases, the null hypothesis is false and should be rejected. A

low rejection rate, especially in comparison with other tests, would signify a problem

with the Type II error rate and the power of the test.

18
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The performance of the 13 tests against the multivariate normal distribution is

found in Table 1. One test, the Mardia-Foster, had a very unreliable performance, with

the observed power ranging from 0% to 100%. Hawkins' test had an empirical power of

100% when p = 5 and n = 25, while the robust version of Singh's test had very high

observed power, ranging from 9.9% to 79.2%. Three other tests (Mudholkar-Srivastava-

Lin, Romeu-Ozturk, and Mardia-Kent) had a maximum observed rejection rate of over

10%. An empirical Type I error rate that can be twice the nominal level or greater

renders all of these tests as very questionable choices and thus they are not considered

further.

INSERT TABLE 1 ABOUT HERE

Fifteen different normal mixture distributions were considered. In general, all of

the tests considered had low power against these distributions. As the amount of

contamination increased from 10% to 50%, the power increased slightly. The power also

increased as the sample size and dimension increased. The most conservative tests in this

situation were Mardia's kurtosis, Henze-Zirkler, Koziol, Paulson-Roohan-Sullo, and

Singh's classical.

The empirical power of the tests was generally higher for situations where the two

different normal distributions had both unequal means and unequal covariances. Tables

2, 3, and 4 give results of the simulations for the normal mixture distributions denoted by

PNp (pi , E, ) + (1 j5)Np (p2, Z2 ) , where pis a mixing parameter that was set equal to

either 0.9, 0.788675, or 0.5, pi is a vector of zeros, p2 is a vector of ones, Z, is a

correlation matrix with all off-diagonal elements equal to 0.2, and E2 is a correlation

17
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matrix with all off-diagonal elements equal to 0.5. Results of the other normal mixtures

are similar and are given in Mecklin (2000).

INSERT TABLES 2, 3, AND 4 ABOUT HERE

Five different symmetric distributions from the elliptically contoured family were

considered. As one would expect, Mardia's test of multivariate skewness had virtually

no power against the multivariate uniform. Singh's classical procedure had power as low

as 13.5% against the multivariate uniform. The Henze-Zirkler test and Royston's test

were generally powerful, but had minimum power of around 40% when p = 5 and n = 25.

Mardia's test of kurtosis had power ranging from 89% to 100% and the tests of Koziol

and Paulson-Roohan-Sullo had power of at least 99.8%. Results for the multivariate

uniform distribution are given in Table 5. Both versions of the Pearson Type II

distribution had extremely similar results, as shown in Mecklin (2000).

INSERT TABLE 5 ABOUT HERE

The Pearson Type VII family of distributions, including the multivariate t and

Cauchy, represent mild departures from normality. In general, the rate of rejection was

very low for these distributions, generally below 10%. In particular, Mardia's test of

kurtosis ranges from only 0.6% to 3.9%. These results are given in Tables 6 and 7.

INSERT TABLES 6 AND 7 ABOUT HERE

Both the multivariate lognormal and chi-square are drastic departures from

normality and the power of the tests were very high. For the multivariate chi-square,

Mardia's skewness, Royston's test, and Henze-Zirkler all had power of at least 99%,

while Mardia's kurtosis had power that dipped as low as 70% when n = 25. As n

18
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increased to 100, the power of all procedures was at least 99.9%. The results from the

multivariate chi-square are given in Table 8.

INSERT TABLE 8 ABOUT HERE

For the lognormal distribution, empirical power was again very high, with the

exception of the erratically performing test of Mardia and Foster. Mardia's kurtosis had

the lowest minimum power (82.5%), and the Koziol test had a minimum power of 82.6%.

Mardia's skewness, Royston, and Henze-Zirkler all had a minimum power of at least

98%. These results are given in Table 9.

INSERT TABLE 9 ABOUT HERE

Multivariate techniques are crucial for detecting the non-normality of the

Knintchine distribution. Since it is symmetric, Mardia's skewness performed very poorly

here. Mardia's kurtosis performed modestly when n = 25 (1.8% to 24.8%), considerably

better when n = 50 (60.5% to 87.6%), and virtually always rejected normality when n =

100 (99.7% to 100%). The other tests performed similarly to Mardia's kurtosis. These

results are in Table 10.

INSERT TABLE 10 ABOUT HERE

The generalized exponential distribution is another theoretically fascinating

multivariate distribution, since it has the same values for skewness and kurtosis as the

multivariate normal distribution. Not surprisingly, Mardia's tests had virtually no power

in this situation. The other procedures also had poor power. These results are in Table

INSERT TABLE 11 ABOUT HERE
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Discussion

Many researchers (Bozdogan & Ramirez, 1986; Tsai & Koziol, 1988; Horswell,

1990; Horswell & Looney, 1992; Kariya & George, 1995; Looney, 1995; Mudholkar,

Srivastava, & Lin, 1995; Baxter, 1997) have lamented the widespread neglect given to

testing the assumption of normality in multivariate analysis. Any attention given towards

assessing the assumptions of a statistical procedure is time well spent. Testing for

multivariate normality is no exception.

Based upon both previous research (Gnanadesikan, 1977; Koziol, 1986; Ward,

1988; Horswell & Looney, 1992; Romeu & Ozturk, 1993; Looney, 1995; Young,

Seaman, & Seaman, 1995; Bogdan, 1999) and the results of this simulation study, no

single procedure is the most powerful in all situations. Of the 13 procedures considered

in this study, 6 of them (Mardia-Foster, Mardia-Kent, Singh's robust, Mudholkar-

Srivastava-Lin, Romeu-Ozturk, Hawkins) had an empirical Type I error rate against the

multivariate normal distribution that exceeded 10% in certain circumstances and thus are

not recommended.

Of the seven remaining procedures, three of them (Koziol, Mardia's skewness,

and Singh's classical) were found to be liberal (i.e. rejected the normal distribution at a

rate slightly higher than 5%). Three other procedures (Mardia's kurtosis, Henze-Zirkler,

and Paulson-Roohan-Sullo) are conservative, while Royston's test consistently rejected at

nearly the nominal level of 5%. The tests of Koziol, Singh, and Paulson-Roohan-Sullo

suffer from the additional disadvantage of requiring the use of empirical critical values.

The proponents of the use of empirical critical values (Romeu & Ozturk, 1993; Young,

Seaman, & Seaman, 1995), even for tests with existing asymptotic null distributions,
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point out that the asymptotic null distributions are conservative and the use of empirically

obtained critical values increases power. However, an advantage of the asymptotic null

distributions is that specialized extensive tables are not necessary (Srivastava & Hui,

1987).

Of the seven remaining tests of multivariate normality, five have situations where

their power is appreciably less than their competitors. Against heavily skewed deviations

from normality, such as the chi-square or lognormal, Mardia's kurtosis, Koziol's test,

Singh's test, and the Paulson-Roohan-Sullo test have power as low as 70-80% while

Royston's test, the Henze-Zirkler test, and Mardia's skewness have power of virtually

100%. However, Mardia's skewness, as one would expect, has virtually no power

against symmetric but non-normal distributions such as the multivariate uniform, t,

Cauchy, or Knintchine distributions.

Some procedure for assessing the assumption of multivariate normality should be

used. If one is going to rely on only one procedure for this purpose, the Henze-Zirkler

test is recommended. This recommendation is based upon both the acceptable Type I

error control and power that is either comparable or superior to the other procedures

against the entire breadth of considered distributions. Another procedure that had similar

power to the Henze-Zirkler and did not suffer from any serious deficiency was Royston's

extension of the Shapiro-Wilk test. These empirical results indicate that Royston's test

performs at least as well as Henze-Zirkler. However, some theoretical concerns exist for

Royston's procedure. Unlike the Henze-Zirkler test, it is not consistent against all

alternatives. Further, Royston's test involves a rather ingenious correction for the

correlation between the variables in the sample. Unfortunately, this correction has been
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criticized by Srivastava and Hui (1987) for not being adequately justified and by Romeu

and Ozturk (1993) for yielding a test that performs poorly when the variates are highly

correlated ( r 0.9 ). Then again, data this highly correlated is rarely encountered in

educational applications.

Another possibility, originally suggested by Csorgo (1989), would be to use a

procedure that is both consistent and powerful to formally test the null hypothesis that the

data are from a multivariate normal distribution, and to follow up with less formal

procedures if normality was rejected. Based upon the results from this study, the use of

the Henze-Zirkler procedure is recommended for conducting the hypothesis test. Since

the Henze-Zirkler test statistic does not help in indicating the reason for the rejection of

normality, a test rejection should be complemented with graphical procedures such as a

chi-square plot and multivariate descriptive statistics such as Mardia's skewness and

kurtosis. Based upon these supplemental results, the researcher then could choose the

most appropriate next step in the multivariate data analysis.
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Table 1

Empirical Type I Error Rate Against the Multivariate Normal Distribution

MVN
Test p-2

n=25
p-5 p-2

n=50
p-5 p-2

n=100
p -5p-3 p-4 p-3 p-4 p -3 p-4

Skew 6.3 6.7 6.6 6.2 6.1 5.9 6.1 6.7 5.4 6.1 6.4 6.0
Kurt 0.9 0.5 0.4 1.0 1.8 1.6 2.3 2.5 3.1 2.9 3.5 3.5

M-F 16.6 99.9 0.0 0.0 11.4 70.9 100.0 0.0 10.8 53.4 97.3 100.0
M-K 4.2 5.0 4.1 3.6 5.8 6.7 7.6 7.7 6.2 8.0 9.1 10.2

H-Z 3.8 3.0 2.6 2.2 4.6 3.6 3.5 3.0 4.3 4.2 3.7 3.8
Roy 4.9 5.2 4.7 4.8 5.2 4.9 5.1 5.1 4.8 5.2 5.3 4.7
MSL 4.9 8.2 12.7 17.0 5.8 10.7 16.3 21.2 6.4 14.0 20.0 24.6
R-0 4.9 7.0 9.3 10.6 4.8 7.0 9.9 11.5 4.5 7.2 9.4 11.7

Koz 6.2 7.6 7.4 8.1 5.2 5.6 6.5 6.4 5.3 4.9 5.7 5.6
Hawk 5.0 8.0 21.7 100.0 4.4 5.8 9.6 27.9 5.1 5.1 6.6 10.9

PRS 3.9 4.2 4.7 4.7 4.1 4.1 4.9 4.5 4.3 4.2 4.7 4.9
S 6.6 6.7 6.6 6.4 5.1 4.8 4.8 4.9 5.1 5.1 4.8 5.1

SROB 29.8 50.3 67.6 79.2 15.2 25.9 40.0 52.2 9.9 15.3 20.0 26.5

Note: Table entries are the percentages of the 10000 simulated data sets where the null
hypothesis of multivariate normality was rejected at the a = 0.05 level.
Skew = Mardia's test of multivariate skewness
Kurt = Mardia's test of multivariate kurtosis
M-F = Mardia-Foster omnibus test
M-K = Mardia-Kent omnibus test
H-Z = Henze-Zirkler test
Roy = Royston's test
MSL = Mudholkar-Srivastava-Lin test
R-0 = Romeu-Ozturk test
Koz = Koziol's test
Hawk = Hawkins' test
PRS = Paulson-Roohan-Sullo test
S = Singh's test (classical)
SROB = Singh's test (robust)
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Table 2

Empirical Power Against the Multivariate Normal Mixture Type 4 With Mixing
Parameter = 0.9

MVN
Test

n=25
p-5

n=50
p-5

n=100
p-5p -2 p-3 p-4 p-2 p-3 p-4 p-2 p -3 p-4

Skew 7.2 7.9 8.4 8.0 8.7 10.2 10.6 10.2 9.5 12.7 14.2 14.0

Kurt 1.0 0.6 0.6 1.1 2.9 2.4 2.1 2.3 4.5 4.3 3.7 3.9

M-F 13.8 99.8 0.0 0.0 9.7 66.3 100.0 0.0 8.9 43.6 93.7 100.0

M-K 5.1 5.9 5.4 4.5 8.1 10.2 11.0 11.2 10.7 14.6 16.9 16.6

H-Z 4.2 3.1 2.7 2.7 4.0 4.0 3.7 3.6 4.8 4.6 4.6 4.4
Roy 6.5 6.1 12.8 14.4 5.2 6.4 6.2 8.1 5.7 5.8 6.2 6.5

MSL 7.1 12.9 24.8 37.5 5.6 11.5 18.9 27.7 6.7 12.5 20.3 28.6
R-0 4.7 6.9 9.6 11.3 4.8 7.4 9.3 12.1 5.1 7.4 10.0 11.2

Koz 6.1 6.1 6.4 7.5 5.3 5.3 5.6 5.9 5.9 5.4 4.9 5.0

Hawk 5.3 7.6 21.9 100.0 5.3 6.7 9.7 29.7 6.1 6.7 7.4 12.8

PRS 4.2 3.9 3.8 4.6 4.7 4.3 4.3 4.4 5.2 5.1 4.6 4.6

S 7.2 6.9 6.8 7.0 6.2 6.2 6.0 5.9 6.3 6.8 6.7 6.5

SROB 31.4 52.2 70.2 80.2 17.8 29.9 43.2 57.7 12.5 19.6 25.3 32.4

Note: Table entries are the percentages of the 10000 simulated data sets where the null
hypothesis of multivariate normality was rejected at the a = 0.05 level.

Skew = Mardia's test of multivariate skewness
Kurt = Mardia's test of multivariate kurtosis
M-F = Mardia-Foster omnibus test
M-K = Mardia-Kent omnibus test
H-Z = Henze-Zirkler test
Roy = Royston's test
MSL = Mudholkar-Srivastava-Lin test
R-0 = Romeu-Ozturk test
Koz = Koziol's test
Hawk = Hawkins' test
PRS = Paulson-Roohan-Sullo test
S = Singh's test (classical)
SROB = Singh's test (robust)
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Table 3

Empirical Power Against the Multivariate Normal Mixture Type 4 With Mixing
Parameter = 0.788675

MVN
Test

n=25
p=5

n=50
p=5

n=100
p=5p=2 p=3 p=4 p=2 p=3 p=4 p=2 p=3 p=4

Skew 8.0 7.9 8.3 8.7 9.3 10.9 10.7 12.1 11.5 16.1 17.3 17.6

Kurt 1.2 0.5 0.7 1.0 2.6 2.5 1.8 2.4 3.3 3.9 3.3 3.5

M-F 14.4 99.8 0.0 0.0 9.1 61.7 99.9 0.0 7.7 35.2 90.8 100.0

M-K 5.1 5.5 5.3 4.6 7.9 10.2 10.2 11.4 10.1 15.0 16.6 17.3

H-Z 4.4 3.4 3.1 3.0 4.9 4.2 3.9 4.0 4.7 4.9 5.1 5.0

Roy 5.7 6.1 12.4 14.0 5.5 5.9 6.2 8.6 6.1 6.4 6.8 7.0

MSL 6.3 13.2 25.5 38.7 6.6 13.9 23.2 33.1 8.1 18.6 30.3 42.5

R-0 4.2 6.9 9.3 11.4 4.7 7.5 9.8 12.4 5113 7.4 10.9 13.0

Koz 5.6 6.6 6.6 7.4 5.7 5.6 5.3 5.9 5.7 5.1 4.7 4.7

Hawk 5.0 7.9 21.6 100.0 5.5 6.4 9.9 29.6 5.5 6.4 7.5 12.3

PRS 4.2 3.8 3.9 4.6 4.9 4.5 4.4 4.4 4.7 4.9 4.6 4.7

7.5 6.8 6.7 6.5 5.4 5.9 5.2 5.5 5.4 6.2 5.8 5.7

SROB 31.3 53.3 69.3 80.5 16.9 29.9 41.5 56.5 11.5 18.0 23.7 30.5

Note: Table entries are the percentages of the 10000 simulated data sets where the null
hypothesis of multivariate normality was rejected at the a = 0.05 level.

Skew = Mardia's test of multivariate skewness
Kurt = Mardia's test of multivariate kurtosis
M-F = Mardia-Foster omnibus test
M-K = Mardia-Kent omnibus test
H-Z = Henze-Zirkler test
Roy = Royston's test
MSL = Mudholkar-Srivastava-Lin test
R-0 = Romeu-Ozturk test
Koz = Koziol's test
Hawk = Hawkins' test
PRS = Paulson-Roohan-Sullo test
S = Singh's test (classical)
SROB = Singh's test (robust)
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Table 4

Empirical Power Against the Multivariate Normal Mixture Type 4 With Mixing
Parameter = 0.5

MVN
Test

n=25
p-5

n=50
p-5

n=100
p-5p-2 p-3 p-4 p-2 p-3 p-4 p-2 p-3 p-4

Skew 6.7 8.3 8.6 9.6 7.7 10.4 11.8 13.5 9.9 14.0 17.5 19.6

Kurt 0.8 0.6 0.5 0.8 2.0 2.3 2.3 2.8 3.0 4.0 4.2 4.2
M-F 13.9 99.8 0.0 0.0 9.2 61.4 99:9 0.0 8.2 37.3 92.3 100.0

M-K 4.3 5.5 5.8 5.5 6.8 9.8 11.8 13.4 8.5 14.1 17.5 21.3

H-Z 3.5 3.2 2.6 2.7 4.7 4.1 3.9 4.2 4.9 5.1 5.1 5.3

Roy 5.3 5.3 10.5 11.2 4.7 5.0 5.3 6.9 6.1 6.4 6.3 7.4

MSL 5.9 12.2 24.3 38.0 6.4 15.4 25.0 34.1 8.9 22.2 34.7 43.6
R-0 4.9 7.7 9.2 11.7 5.2 8.1 10.7 12.5 5.8 9.0 11.9 13.4

Koz 6.0 6.3 6.4 6.6 5.5 6.0 5.2 5.6 5.8 5.4 4.8 4.5
Hawk 4.8 7.6 22.4 100.0 4.7 6.5 10.2 31.7 5.2 6.2 7.5 14.5

PRS 4.0 3.7 3.7 4.0 4.5 4.7 4.2 4.7 4.5 5.0 4.6 5.1

S 6.9 6.6 7.3 7.4 5.3 6.3 5.7 6.2 5.2 6.4 6.8 7.5

SROB 30.9 51.5 70.8 82.2 15.8 30.1 44.1 59.4 11.1 18.9 27.0 36.6

Note: Table entries are the percentages of the 10000 simulated data sets where the null
hypothesis of multivariate normality was rejected at the a = 0.05 level.

Skew = Mardia's test of multivariate skewness
Kurt = Mardia's test of multivariate kurtosis
M-F = Mardia-Foster omnibus test
M-K = Mardia-Kent omnibus test
H-Z = Henze-Zirkler test
Roy = Royston's test
MSL = Mudholkar-Srivastava-Lin test
R-0 = Romeu-Ozturk test
Koz = Koziol's test
Hawk = Hawkins' test
PRS = Paulson-Roohan-Sullo test
S = Singh's test (classical)
SROB = Singh's test (robust)
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Table 5

Empirical Power Against the Multivariate Uniform Distribution

MVN
Test p=2

n=25
p=5 p=2

n=50
p=2

n=100
p=5p=3 p=4 p=3 p=4 p=3 p=4

Skew 0.3 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Kurt 89.0 95.8 97.2 96.8 100.0 100.0 100.0 100.0 100.0 100.0. 100.0 100.0

M-F 92.1 99.3 67.6 37.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
M-K 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 100.0 0.1 0.0 0.0
H-Z 100.0 99.8 72.3 39.6 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Roy 100.0 66.5 50.7 40.3 100.0 100.0 97.7 82.1 100.0 100.0 100.0 100.0

MSL 97.8 38.5 29.6 37.7 100.0 96.1 61.0 42.3 100.0 100.0 98.3 89.9

R-0 85.3 35.8 20.9 18.5 99.9 78.3 48.6 35.8 100.0 99.5 88.4 76.4
Koz 100.0 100.0 99.9 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Hawk 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

PRS 99.9 99.9 99.9 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

S 39.4 17.0 13.5 13.5 76.5 38.3 21.5 14.5 99.6 74.1 56.2 37.9

SROB 39.8 17.9 15.1 16.3 76.5 38.3 21.5 14.6 99.6 74.1 56.2 37.9

Note: Table entries are the percentages of the 10000 simulated data sets where the null
hypothesis of multivariate normality was rejected at the a = 0.05 level.

Skew = Mardia's test of multivariate skewness
Kurt = Mardia's test of multivariate kurtosis
M-F = Mardia-Foster omnibus test
M-K = Mardia-Kent omnibus test
H-Z = Henze-Zirkler test
Roy = Royston's test
MSL = Mudholkar-Srivastava-Lin test
R-0 = Romeu-Ozturk test
Koz = Koziol's test
Hawk = Hawkins' test
PRS = Paulson-Roohan-Sullo test
S = Singh's test (classical)
SROB = Singh's test (robust)
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Table 6

Empirical Power Against the Multivariate t Distribution

MVN
Test

n=25
p=5

n=50
p=5

n=100
p=5p=2 p=3 p=4 p=2 p=3 p=4 p=2 p=3 p=4

Skew 5.9 6.4 6.5 5.8 6.1 5.8 6.3 6.9 5.8 6.5 6.5 6.0

Kurt 0.9 0.6 0.7 1.2 2.0 .1.7 1.8 2.7 3.2 3.2 3.1 3.6

M-F 15.7 89.9 0.0 0.0 10.4 70.6 100.0 0.0 10.9 53.1 97.1 100.0
M-K 4.1 4.6 4.4 3.1 6.0 6.7 7.6 7.8 6.7 8.5 9.2 9.6

H-Z 3.9 3.0 2.6 2.3 4.5 3.5 3.5 3.1 5.2 4.3 4.2 3.6

Roy 5.4 5.0 5.0 4.6 5.1 5.1 5.1 7.1 5.2 5.5 5.5 5.5

MSL 4.7 8.3 12.7 17.3 5.5 10.9 16.6 26.7 6.5 13.3 20.0 27.0
R-0 5.0 6.8 8.9 11.4 5.0 6.8 9.3 11.7 5.1 7.7 9.6 11.5

Koz 6.0 7.1 7.6 8.0 5.0 6.0 5.7 6.8 5.4 5.4 5.1 5.4
Hawk 4.6 7.7 21.6 100.0 4.3 5.7 8.6 28.6 5.0 5.6 6.4 10.9

PRS 3.8 4.1 4.6 4.8 4.0 4.3 4.0 4.7 4.2 4.7 4.5 4.6
S 6.6 6.8 6.3 6.6 5.3 5.0 5.1 5.1 4.9 5.4 4.8 5.6

SROB 29.5 50.9 68.3 78.9 15.0 26.1 39.4 53.1 9.9 14.9 20.2 27.4

Note: Table entries are the percentages of the 10000 simulated data sets where the null
hypothesis of multivariate normality was rejected at the a = 0.05 level.

Skew = Mardia's test of multivariate skewness
Kurt = Mardia's test of multivariate kurtosis
M-F = Mardia-Foster omnibus test
M-K = Mardia-Kent omnibus test
H-Z = Henze-Zirkler test
Roy = Royston's test
MSL = Mudholkar-Srivastava-Lin test
R-0 = Romeu-Ozturk test
Koz = Koziol's test
Hawk = Hawkins' test
PRS = Paulson-Roohan-Sullo test
S = Singh's test (classical)
SROB = Singh's test (robust)
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Table 7

Empirical Power Against the Multivariate Cauchy Distribution

MVN
Test

n=25
p=5

n=50
p=5

n--100
p=5p=2 p=3 p=4 p=2 p=3 .p=4 p=2 p=3 p=4

Skew 6.3 6.4 6.7 6.4 5.8 6.3 6.6 6.6 4.9 5.8 6.1 6.1

Kurt 0.8 0.6 0.6 0.9 1.9 1.6 2.0 2.3 3.0 2.9 3.0 3.9

M-F 15.1 99.9 0.0 0.0 10.9 69.7 100.0 0.0 10.6 53.3 97.3 100.0

M-K 4.3 4.6 4.5 3.6 5.9 6.8 7.9 8.0 6.5 8.2 8.9 10.1

H-Z 3.7 3.0 2.7 2.6 4.2 3.3 3.8 3.3 4.9 4.4 4.0 3.5

Roy 4.9 5.1 5.0 14.1 5.5 5.0 5.2 7.0 5.0 5.1 5.0 6.0
MSL 5.0 8.6 12.7 34.8 5.9 10.8 19.6 26.6 6.6 12.7 19.5 26.3
R-0 4.7 6.9 8.8 11.0 5.1 6.9 8.9 11.6 4.9 6.6 10.4 11.5

Koz 6.0 7.3 6.9 8.1 5.1 5.8 6.1 6.8 5.7 5.0 5.1 5.8

Hawk 4.7 7.4 21.7 100.0 4.5 5.6 9.3 28.1 5.4 5.3 6.2 10.0
PRS 3.9 4.0 3.9 5.1 4.2 4.1 4.5 4.6 4.7 4.3 4.2 4.8
S 6.7 6.8 6.7 6.8 4.8 4.7 5.1 5.2 5.0 5.2 4.5 4.8

SROB 29.3 50.8 67.6 79.0 15.3 26.4 39.2 52.8 9.7 15.5 19.6 26.9

Note: Table entries are the percentages of the 10000 simulated data sets where the null
hypothesis of multivariate normality was rejected at the a = 0.05 level.

Skew = Mardia's test of multivariate skewness
Kurt = Mardia's test of multivariate kurtosis
M-F = Mardia-Foster omnibus test
M-K = Mardia-Kent omnibus test
H-Z = Henze-Zirkler test
Roy = Royston's test
MSL = Mudholkar-Srivastava-Lin test
R-0 = Romeu-Ozturk test
Koz = Koziol's test
Hawk = Hawkins' test
PRS = Paulson-Roohan-Sullo test
S = Singh's test (classical)
SROB = Singh's test (robust)
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Table 8

Empirical Power Against the Multivariate Chi-Square Distribution

MVN
Test p=2

n=25
p=5 p=2

n=50
p=5 p=2

n=100
p=5p=3 p=4 p=3 p=4 p=3 p=4

Skew 99.3 99.7 99.8 99.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Kurt 70.0 74.7 73.7 71.9 96.5 98.6 99.3 99.5 100.0 100.0 100.0 100.0
M-F 51.7 94.4 3.9 0.3 96.4 97.3 98.8 62.0 100.0 100.0 100.0 100.0
M-K 93.7 96.2 96.8 96.8 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
H-Z 99.6 99.8 99.8 99.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Roy 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
MSL 99.8 99.2 98.8 97.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
R-0 99.5 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Koz 78.4 82.6 80.6 78.1 98.8 99.4 99.7 99.8 100.0 100.0 100.0 100.0
Hawk 81.0 91.3 96.8 100.0 98.9 99.6 99.9 100.0 100.0 100.0 100.0 100.0
PRS 75.6 81.4 82.3 82.1 98.6 99.3 99.7 99.8 100.0 100.0 100.0 100.0
S 82.8 83.5 80.5 77.0 97.0 97.8 97.9 97.7 99.9 100.0 100.0 100.0
SROB 96.0 99.3 99.7 99.9 98.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0

Note: Table entries are the percentages of the 10000 simulated data sets where the null
hypothesis of multivariate normality was rejected at the a = 0.05 level.

Skew = Mardia's test of multivariate skewness
Kurt = Mardia's test of multivariate kurtosis
M-F = Mardia-Foster omnibus test
M-K = Mardia-Kent omnibus test
H-Z = Henze-Zirkler test
Roy = Royston's test
MSL = Mudholkar-Srivastava-Lin test
R-0 = Romeu-Ozturk test
Koz = Koziol's test
Hawk = Hawkins' test
PRS = Paulson-Roohan-Sullo test
S = Singh's test (classical)
SROB = Singh's test (robust)
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Table 9

Empirical Power Against the Multivariate Lognormal Distribution

MVN
Test p=2

n=25
p=5 p=2

n=50
p=5 p=2

n=100
p=5p=3 p=4 p=3 p=4 p=3 p=4

Skew 98.8 99.7 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Kurt 82.5 90.3 93.7 95.8 99.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
M-F 67.1 100.0 20.7 6.3 98.5 99.6 100.0 95.3 100.0 100.0 100.0 100.0
M-K 95.2 98.0 99.3 99.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
H-Z 99.1 99.7 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Roy 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
MSL 99.1 96.3 95.6 80.8 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0
R-0 97.1 98.9 99.4 99.7 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Koz 82.6 92.3 94.8 96.6 99.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0
Hawk 87.2 97.1 99.6 100.0 99.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0
PRS 83.0 92.9 95.8 97.7 99.3 100.0 100.0 100.0 100.0 100.0 100.0 100.0
S 88.8 92.1 93.4 93.1 98.8 99.7 100.0 100.0 100.0 100.0 100.0 100.0

SROB 94.7 99.6 100.0 100.0 99.5 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Note: Table entries are the percentages of the 10000 simulated data sets where the null
hypothesis of multivariate normality was rejected at the a = 0.05 level.

Skew = Mardia's test of multivariate skewness
Kurt = Mardia's test of multivariate kurtosis
M-F = Mardia-Foster omnibus test
M-K = Mardia-Kent omnibus test
H-Z = Henze-Zirkler test
Roy = Royston's test
MSL = Mudholkar-Srivastava-Lin test
R-0 = Romeu-Ozturk test
Koz = Koziol's test
Hawk = Hawkins' test
PRS = Paulson-Roohan-Sullo test
S = Singh's test (classical)
SROB = Singh's test (robust)
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Table 10

Empirical Power Against the Knintchine Distribution

MVN
Test

n=25
p-5

n=50
p-5 /3-2

n=100
p-5p-2 p-3 p-4 p-2 p-3 p-4 p-3 p-4

Skew 0.3 0.2 0.2 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Kurt 1.8 9.5 18.1 24.8 60.5 78.3 83.7 87.6 99.7 99.9 100.0 100.0

M-F 30.3 98.6 0.2 0.1 82.2 96.0 100.0 6.7 99.8 100.0 100.0 100.0

M-K 0.1 0.1 0.2 0.1 0.0 0.0 0.0 0.0 3.1 0.1 0.0 0.0

H-Z 12.7 10.5 9.2 7.3 53.2 49.9 44.0 37.2 94.8 94.8 93.8 90.5

Roy 20.0 15.6 12.5 33.4 84.7 80.8 78.8 79.8 100.0 100.0 100.0 100.0

MSL 19.8 22.0 24.4 49.1 80.5 71.0 69.6 70.0 100.0 99.7 99.3 98.9
R-0 28.1 36.1 41.0 45.7 64.9 77.1 83.4 88.0 96.2 99.0 99.7 100.0

Koz 54.5 59.6 58.1 57.9 89.0 92.4 92.9 93.0 99.8 100.0 100.0 100.0

Hawk 33.2 45.1 69.2 100.0 77.8 85.1 89.2 96.9 99.5 99.8 99.9 100.0

PRS 36.4 41.9 44.5 47.2 81.1 86.9 88.3 89.6 99.5 99.9 100.0 100.0

S 21.7 16.0 13.3 11.7 45.1 30.7 22.5 17.8 90.2 76.0 61.4 51.2

SROB 26.6 28.8 36.2 43.2 45.0 32.6 27.7 28.7 88.9 74.8 60.7 51.6

Note: Table entries are the percentages of the 10000 simulated data sets where the null
hypothesis of multivariate normality was rejected at the a = 0.05 level.

Skew = Mardia's test of multivariate skewness
Kurt = Mardia's test of multivariate kurtosis
M-F = Mardia-Foster omnibus test
M-K = Mardia-Kent omnibus test
H-Z = Henze-Zirkler test
Roy = Royston's test
MSL = Mudholkar-Srivastava-Lin test
R-0 = Romeu-Ozturk test
Koz = Koziol's test
Hawk = Hawkins' test
PRS = Paulson-Roohan-Sullo test
S = Singh's test (classical)
SROB = Singh's test (robust)
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Table 11

Empirical Power Against the Generalized Exponential Power Distribution

MVN n=25
p -5

n=50
p-5

n=100
p-5Test p -2 p -3 p-4 p -2 p -3 p-4 p-2 p-3 p-4

Skew 5.6 6.2 7.0 6.7 4.0 4.9 5.5 6.2 2.9 3.9 4.5 4.8

Kurt 0.9 0.5 0.5 0.6 1.2 1.0 1.1 1.7 1.3 1.6 1.8 2.0

M-F 18.3 99.9 0.0 0.0 12.2 73.6 100.0 0.0 10.7 57.5 97.9 100.0

M-K 3.5 4.0 4.2 3.6 3.5 4.1 4.8 5.8 2.3 3.6 4.7 5.8

H-Z 4.7 3.5 2.8 2.8 5.4 5.0 4.0 3.9 7.8 6.9 6.3 5.9

Roy 5.5 5.6 9.7 10.8 4.6 4.6 4.7 6.1 5.6 6.0 5.1 5.5

MSL 5.8 11.8 21.9 35.5 5.7 11.8 17.6 26.3 7.3 13.9 20.1 27.4

R-0 5.6 7.4 10.1 12.2 8.1 11.1 13.2 15.9 13.7 20.6 25.0 29.0

Koz 6.5 6.3 6.9 6.9 8.8 7.0 6.3 6.8 16.4 11.0 8.4 7.1

Hawk 9.2 11.0 23.7 100.0 14.1 12.5 12.9 28.1 24.7 18.6 14.7 16.2

PRS 6.5 5.9 5.4 4.9 12.4 9.5 7.4 6.5 22.3 16.4 12.1 .9.9

S 4.5 5.5 6.2 6.3 2.7 3.4 3.8 4.2 3.1 3.5 4.0 4.3

SROB 27.0 47.8 67.5 78.1 9.0 18.1 30.7 45.2 3.6 6.5 9.6 15.1

Note: Table entries are the percentages of the 10000 simulated data sets where the null
hypothesis of multivariate normality was rejected at the a = 0.05 level.

Skew = Mardia's test of multivariate skewness
Kurt = Mardia's test of multivariate kurtosis
M-F = Mardia-Foster omnibus test
M-K = Mardia-Kent omnibus test
H-Z = Henze-Zirkler test
Roy = Royston's test
MSL = Mudholkar-Srivastava-Lin test
R-0 = Romeu-Ozturk test
Koz = Koziol's test
Hawk = Hawkins' test
PRS = Paulson-Roohan-Sullo test
S = Singh's test (classical)
SROB = Singh's test (robust)
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